Что такое гидравлические двигатели?

Гидравлические двигатели

Гидравлические двигатели преобразуют гидравлическое давление в силу, способную генерировать большую мощность. Это тип привода, который преобразует давление движущейся гидравлической жидкости в крутящий момент и энергию вращения.

Гидравлические двигатели являются важным компонентом в области гидравлики, специальной формы передачи энергии, которая использует энергию, передаваемую при перемещении жидкостей под давлением, и преобразует ее в механическую энергию.

Передача энергии — это общий термин, обозначающий область преобразования энергии в полезные повседневные формы. Тремя основными ветвями передачи энергии являются электрическая энергия, механическая мощность и гидравлическая энергия.

Гидравлическую энергию можно далее разделить на область гидравлики и область пневматики (перевод энергии сжатого газа в механическую энергию).

Поскольку их часто путают в повседневном языке, важно различать гидравлические двигатели и гидроагрегаты.

С технической точки зрения замкнутая механическая система, которая использует жидкость для производства гидравлической энергии, известна как гидравлический силовой агрегат или гидравлический силовой агрегат.

Эти блоки или блоки обычно включают резервуар, насос, систему трубопроводов / трубопроводов, клапаны и приводы (включая как цилиндры, так и двигатели).

Гидравлические двигатели

Однако нередко можно услышать, что гидравлический двигатель описывается как состоящий из этих компонентов — резервуара, насоса и т. д. Однако более точнее описывать гидравлический двигатель как часть общей гидравлической системы питания, которая работает в синхронизировать с этими другими компонентами.

Гидравлические двигатели — это тип исполнительного компонента в общей гидравлической энергетической системе — компонент, ответственный за фактическое преобразование гидравлической энергии в механическую.

История гидравлических двигателей

Возможно, гидравлическая энергия восходит к истокам человеческой цивилизации. На протяжении тысячелетий люди использовали силу перемещения воды для получения энергии. (Самым простым «гидравлическим» применением является использование движущейся воды для поворота колес.)

С точки зрения разработки гидравлических двигателей середина промышленной революции стала заметным поворотным моментом. В том же году английский промышленник Уильям Армстронг начал разработку более эффективных приложений гидравлической энергии после того, как заметил неэффективность использования водяного колеса во время рыбалки.

Одним из его первых изобретений был роторный двигатель с водяной тягой. К сожалению, это изобретение не привлекло большого внимания, но оно предоставило раннюю модель поворотного привода, основанного на гидравлической энергии.

Как работает гидравлическая энергия

Жидкости представляют собой «среднее» состояние между газами и твердыми телами в спектре материи. Несмотря на это, жидкости представляют собой твердые тела в гораздо большей степени, чем газы, в одном важном аспекте: они практически несжимаемы.

Одним из следствий этого является то, что сила, приложенная к одной точке в ограниченной жидкости, может довольно эффективно передаваться в другую точку той же жидкости.

Эта реальность составляет основу механической энергии, которую могут производить гидравлические системы. Для более полного объяснения того, как работает гидравлическая мощность, обратитесь к нашей статье о гидравлических насосах.

Как работают гидравлические двигатели

Ранее было отмечено, что «Закон Паскаля» применим к замкнутым жидкостям. Таким образом, чтобы жидкость действовала гидравлически, она должна работать с замкнутой системой определенного типа.

Как отмечалось во введении, эти «системы» известны как гидравлические силовые агрегаты и имеют три основные части — резервуар, насос и привод, которые работают вместе для преобразования гидравлической энергии в механическую.

Гидравлические двигатели являются неотъемлемой частью машин, работа которых зависит от гидравлической энергии, поскольку они приводят в действие и «завершают» процесс преобразования гидравлической энергии в механическую.

Схема работы гидравлического двигателя

Поскольку гидравлические двигатели представляют собой довольно простые машины, состоящие из вращающихся механизмов, они специально преобразуют гидравлическую энергию в механическую энергию вращения.

Основной корпус и внутренние компоненты двигателя изготовлены из металла, такого как сталь или железо, поэтому они могут выдерживать высокое давление и рабочие скорости. В некотором смысле двигатели можно рассматривать как гидравлические насосы, работающие «в обратном направлении» или в обратном направлении.

В целом, гидравлический силовой агрегат перекачивает жидкость (обычно это масло) через небольшой пневматический двигатель из резервуара и отправляет ее в двигатель, регулируя температуру жидкости. Масло перекачивается из резервуара через впускной клапан к выпускному клапану через ряд шестерен, поворотные лопатки или цилиндры, в зависимости от типа гидравлического двигателя.

Жидкость под давлением создает механическую энергию и движение, физически толкая двигатель, заставляя вращающиеся компоненты вращаться очень быстро и передавая энергию механизму, к которому подключен двигатель.

Как правило, не каждый компонент вращения напрямую связан с производством механической энергии; например, в типичном мотор-редукторе только одна из двух шестерен связана с валом двигателя и отвечает за его вращение.

Этот тип работы прямо контрастирует с электрическими двигателями, в которых электромагнитные силы, создаваемые протекающим электрическим током, являются ответом на вращение вала двигателя.

Типы гидравлических двигателей

Существует три основных типа гидравлических двигателей: шестеренчатые, лопастные и поршневые. Каждый идентифицируется по конструкции вращающегося внутри компонента. В совокупности различные типы гидравлических двигателей оптимальны для широкого диапазона конкретных применений, условий или использования.

  • Одним из распространенных видов гидравлических двигателей является гидравлический редукторный двигатель. Жидкость закачивается в коробку передач под высоким давлением, которая вращает шестерни, генерируя энергию.
  • Двигатели поршневого типа представляют собой еще один распространенный тип гидравлических двигателей. Радиально-поршневые гидравлические двигатели имеют поршни, установленные вокруг центрального вала, уравновешенного эксцентриситетом. Жидкость заставляет поршни двигаться наружу, вызывая вращение. Аксиально-поршневые гидравлические двигатели получили свое название от того факта, что они используют осевое движение вместо радиального, несмотря на их конструкцию, аналогичную радиально-поршневым двигателям.
  • Гидравлические лопастные двигатели получили свое название от лопастей (прямоугольных лопастей), которые скользят внутрь и наружу из роторов с прорезями, когда жидкость нагнетается в двигатель через впускное отверстие.
  • Гидравлические моторы колес встроены в ступицы колес для подачи энергии, необходимой для вращения колес и перемещения транспортного средства. Гидравлический колесный двигатель может управлять одним колесом или несколькими колесами, в зависимости от мощности двигателя и размера машины.
  • Другие двигатели ориентированы на скорость вращения и крутящий момент. Высокоскоростные гидравлические двигатели преобразуют гидравлическое давление в силу при повышенных оборотах в минуту, вырабатывая большое количество энергии. Гидравлические двигатели с высоким крутящим моментом работают на низких скоростях при работе с повышенным крутящим моментом, благодаря чему они получили название «двигатели с низкой скоростью и высоким крутящим моментом».

Как устроен гидравлический двигатель

Гидравлические двигатели и их различные применения все еще совершенствуются. Одним из примеров является разработка гибридных гидравлических автомобилей, которые разрабатываются как альтернатива гибридным газовым / электрическим автомобилям. Транспортные средства с гибридной гидравликой особенно эффективны при рекуперации энергии при торможении или замедлении.

Преимущества гидравлических систем и двигателей

Использование гидравлических систем в целом дает несколько преимуществ в общей области передачи энергии. Некоторые из этих преимуществ включают эффективность, простоту, универсальность, относительную безопасность и т. Д. Эти и другие преимущества более подробно рассматриваются в нашей статье о гидравлических насосах.

В частности, гидравлические двигатели имеют два очевидных преимущества:

  • Мощность. Гидравлические двигатели могут производить гораздо большую мощность, чем другие двигатели того же размера, и по этой причине используются для больших нагрузок, чем электродвигатели.
  • Компактность. Когда ограниченное пространство является проблемой, используются небольшие гидравлические двигатели. Небольшие гидравлические двигатели имеют малую длину хода; они могут быть меньше дюйма.

Основным недостатком использования гидравлических двигателей является неэффективное использование фактического источника энергии. Энергетические системы с гидравлическими двигателями могут потреблять большое количество гидравлической жидкости.

Что нужно знать о гидравлических двигателях

Например, машинам с гидравлическим приводом на строительных площадках нередко требуется 100 или более галлонов гидравлического масла для работы.

Применение гидравлических двигателей

Гидравлические системы и их использование широко используются в самых разных областях, включая строительство, сельскохозяйственные поля, промышленные поля, области транспорта (например, автомобилестроение, авиакосмическая промышленность), различные морские рабочие среды и т. д.

Гидравлические двигатели обычно используются в машинах, требующих высокого давления такие действия, как воздушные суда для подъема закрылков, тяжелые строительные машины, такие как экскаваторы-погрузчики или промышленные подъемные краны, или для питания автоматизированных производственных систем.

Гидравлические двигатели также используются в траншеекопателях, автомобилях, строительном оборудовании, приводах для морских лебедок , процессах утилизации и утилизации отходов, колесных двигателях для военной техники, самоходных кранах, экскаваторах, лесном хозяйстве, сельском хозяйстве,конвейерные и шнековые системы, дноуглубительные работы и промышленная обработка.

Уход за гидравлическими двигателями

Несмотря на кажущуюся простоту гидравлических систем, инженеры и производители должны учитывать определенные переменные, чтобы создать эффективное и безопасное устройство. Жидкость, используемая в двигателе или системе, должна, прежде всего, быть хорошей смазкой.

Он также должен быть химически стабильным и совместимым с металлами внутри двигателя. Насос, резервуар для жидкости и предохранительные клапаны должны иметь соответствующую мощность, производительность или прочность, чтобы двигатель работал на оптимальном уровне.

Проблемы с гидравлическими двигателями часто могут быть связаны с плохим обслуживанием, использованием неподходящей жидкости в двигателе или неправильным использованием самого двигателя. Некоторые нередкие причины отказа мотора:

  • внутренняя утечка (из трубопроводов, питающих двигатель и т. д.)
  • плохая центровка двигателя (например, несоосность вала двигателя во время установки)
  • использование грязной гидравлической жидкости.

Никогда не следует откладывать диагностику и устранение первопричины отказа двигателя, когда бы он ни происходил.

Важно помнить, что гидравлические двигатели предназначены для работы в определенных пределах, которые нельзя превышать. Эти ограничения в основном включают крутящий момент, давление, скорость, температуру и нагрузку.

В качестве одного примера, работа гидравлического двигателя при чрезмерных температурах приводит к разжижению гидравлической жидкости, отрицательно влияет на внутреннюю смазку и снижает общий КПД двигателя. Пребывание в рабочих пределах двигателя предотвратит ненужные и ненужные неисправности.

С точки зрения безопасности относительная простота гидравлических систем и компонентов (по сравнению с электрическими или механическими аналогами) не означает, что с ними не следует обращаться осторожно.

Основная мера безопасности при взаимодействии с гидравлическими системами — по возможности избегать физического контакта. Активное давление жидкости в гидравлической системе может представлять опасность, даже если гидравлическая машина не работает активно.

 

Виды и типы гидравлических двигателей

  • Двигатели с гидроприводом используются в системах с цилиндрами, насосами, клапанами и другими компонентами.
  • Гидравлические барабанные двигатели представляют собой передовую и высокоэффективную систему привода конвейера, в которой двигатель, трансмиссия и подшипники полностью заключены в корпус барабана.
  • Двигатели гидравлических насосов используются в системах с цилиндрами, насосами, клапанами и другими компонентами.
  • Роликовые гидравлические двигатели , разновидность орбитальных гидравлических двигателей, имеют ролики, которые имеют гидродинамическую опору для минимизации трения, что обеспечивает максимальную долговечность и высокую производительность при высоком давлении.
  • Роторные гидравлические двигатели , разновидность орбитальных гидравлических двигателей, особенно подходят для длительных рабочих циклов при среднем давлении. Роторные двигатели приводятся в действие лопастями, которые закреплены и установлены непосредственно на статоре.

Гидравлический мотор термины

Аэрация — воздух в гидравлической жидкости.

Аккумулятор — емкость, в которой хранится жидкость под давлением. Аккумуляторы, обычно поршневые, баллонные и диафрагменные, используются в качестве источника энергии или для поглощения гидравлических ударов.

Цилиндр — устройство, преобразующее гидравлическую энергию в линейное механическое движение и силу.

Смещение — количество жидкости, которое проходит через насос, двигатель или цилиндр за период времени или во время одного события срабатывания, такого как оборот или ход.

Коэффициент сухого трения — степень трения, возникающего в результате контакта между движущимися поверхностями вала двигателя.

Фильтр — Устройство в гидравлической системе, которое используется для удаления загрязнений из масла.

Гидравлическая система питания — система, которая использует давление жидкости для передачи и управления мощностью.

Шестерня — зубчатое колесо, используемое для передачи механической энергии.

Гидравлика — наука о передаче силы через среду содержащейся жидкости.

Гидравлический тестер — устройство, которое используется для поиска и устранения неисправностей и проверки компонентов гидравлической системы.

Линия — трубка, труба или шланг, который действует как проводник гидравлической жидкости.

Масло — скользкая и вязкая жидкость, не смешиваемая с водой. Масло часто используется в гидравлических системах, потому что его нельзя сжимать.

Поршень — цилиндрический кусок металла, который движется вверх и вниз внутри цилиндра гидравлического двигателя.

Нажимная пластина — пластина на стороне шестеренчатого или лопастного насоса или картриджа двигателя, которая используется для сведения к минимуму зазора и проскальзывания.

Насос — механическое устройство, которое перекачивает жидкости и газы всасыванием или давлением.

Сопротивление — в гидравлике состояние, вызванное препятствием или ограничением на пути потока.

Вал — Устройство, которое механически прикреплено к рабочей нагрузке и обеспечивает вращательное движение в двигателях.

Ход — движение элемента золотника клапана, штока цилиндра или насоса или смещение двигателя по прямой линии, которая устанавливает пределы движения.

Дроссель — ограничение нормального потока жидкости.

Крутящий момент — мера силы, прилагаемой к вращательному движению, обычно измеряется в фут-фунтах.

Клапан — устройство, контролирующее расход, направление или давление жидкости.

Лопасть — в гидравлическом двигателе плоская поверхность, которая вращается и отталкивается от жидкости.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

два × 2 =

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: